Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 2(2): 100486, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34041500

RESUMO

MNase-seq (micrococcal nuclease sequencing) is used to map nucleosome positions in eukaryotic genomes to study the relationship between chromatin structure and DNA-dependent processes. Current protocols require at least two days to isolate nucleosome-protected DNA fragments. We have developed a streamlined protocol for S. cerevisiae and other fungi which takes only three hours. Modified protocols were developed for wild fungi and mammalian cells. This method for rapidly producing sequencing-ready nucleosome footprints from several organisms makes MNase-seq faster and easier, with less chemical waste.


Assuntos
Pegada de DNA/métodos , Nucleossomos , Análise de Sequência de DNA/métodos , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , DNA/química , DNA/genética , DNA/metabolismo , Genômica , Nuclease do Micrococo/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética
2.
Elife ; 102021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33576335

RESUMO

Eukaryotic genomes are organized dynamically through the repositioning of nucleosomes. Isw2 is an enzyme that has been previously defined as a genome-wide, nonspecific nucleosome spacing factor. Here, we show that Isw2 instead acts as an obligately targeted nucleosome remodeler in vivo through physical interactions with sequence-specific factors. We demonstrate that Isw2-recruiting factors use small and previously uncharacterized epitopes, which direct Isw2 activity through highly conserved acidic residues in the Isw2 accessory protein Itc1. This interaction orients Isw2 on target nucleosomes, allowing for precise nucleosome positioning at targeted loci. Finally, we show that these critical acidic residues have been lost in the Drosophila lineage, potentially explaining the inconsistently characterized function of Isw2-like proteins. Altogether, these data suggest an 'interacting barrier model,' where Isw2 interacts with a sequence-specific factor to accurately and reproducibly position a single, targeted nucleosome to define the precise border of phased chromatin arrays.


DNA encodes the genetic instructions for life in a long, flexible molecular chain that is packaged up neatly to fit inside cells. Short sections of DNA are wound around proteins to form bundles called nucleosomes, and then spun into chromatin fibres, a more compact form of DNA. While nucleosomes are a fundamental part of this space-saving packaging process, they also play a key regulatory role in gene expression, which is where genes are decoded into working proteins. Placing nucleosomes at regular intervals along DNA invariably controls which parts of the DNA ­ and which genes ­ the cell's machinery can access and 'read' to make proteins. But the nucleosomes' positions are not fixed, and gene expression is a dynamic process. The cell often uncoils and repackages its DNA while molecular motors called chromatin remodelling proteins move nucleosomes up and down the DNA, exposing some genes and obstructing others. One group of chromatin remodelling proteins are called Imitation Switch (ISWI) complexes. It has long been thought that these complexes position nucleosomes with little regard to the underlying DNA sequence or the genes encoded, that is to say in a non-specific way. However, this theory has not been thoroughly tested. It is possible that ISWI complexes actually place nucleosomes on certain parts of DNA at particular times in an organism's development, or in response to other environmental factors. Except how such precision is achieved remains unknown. To test this alternative theory of nucleosome positioning, Donovan et al. studied ISWI proteins and nucleosomes in common baker's yeast. This involved systematically removing sections of ISWI proteins to see whether the complexes could still position nucleosomes, and which parts of the proteins where essential for the job. By doing so, Donovan et al. identified multiple 'targeting' proteins that bind to ISWI proteins and deliver the complexes to specific target sequences of DNA. From there, the complex remodels the nucleosome, positioning it at a specific distance from its landing site on DNA, as further experiments showed. This research provides a new model for explaining how nucleosomes are positioned to package DNA and control gene expression. Donovan et al. have identified a new mechanism of interaction between nucleosomes and chromatin remodelling proteins of the ISWI variety. It is possible that more interactions of this kind will be discovered with further research.


Assuntos
Adenosina Trifosfatases/genética , Montagem e Desmontagem da Cromatina/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Adenosina Trifosfatases/metabolismo , Animais , Drosophila/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
3.
Circulation ; 138(19): 2130-2144, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30474423

RESUMO

BACKGROUND: Cardiovascular bypass grafting is an essential treatment for complex cases of atherosclerotic disease. Because the availability of autologous arterial and venous conduits is patient-limited, self-assembled cell-only grafts have been developed to serve as functional conduits with off-the-shelf availability. The unacceptably long production time required to generate these conduits, however, currently limits their clinical utility. Here, we introduce a novel technique to significantly accelerate the production process of self-assembled engineered vascular conduits. METHODS: Human aortic smooth muscle cells and skin fibroblasts were used to construct bilevel cell sheets. Cell sheets were wrapped around a 22.5-gauge Angiocath needle to form tubular vessel constructs. A thin, flexible membrane of clinically approved biodegradable tissue glue (Dermabond Advanced) served as a temporary, external scaffold, allowing immediate perfusion and endothelialization of the vessel construct in a bioreactor. Subsequently, the matured vascular conduits were used as femoral artery interposition grafts in rats (n=20). Burst pressure, vasoreactivity, flow dynamics, perfusion, graft patency, and histological structure were assessed. RESULTS: Compared with engineered vascular conduits formed without external stabilization, glue membrane-stabilized conduits reached maturity in the bioreactor in one-fifth the time. After only 2 weeks of perfusion, the matured conduits exhibited flow dynamics similar to that of control arteries, as well as physiological responses to vasoconstricting and vasodilating drugs. The matured conduits had burst pressures exceeding 500 mm Hg and had sufficient mechanical stability for surgical anastomoses. The patency rate of implanted conduits at 8 weeks was 100%, with flow rate and hind-limb perfusion similar to those of sham controls. Grafts explanted after 8 weeks showed a histological structure resembling that of typical arteries, including intima, media, adventitia, and internal and external elastic membrane layers. CONCLUSIONS: Our technique reduces the production time of self-assembled, cell sheet-derived engineered vascular conduits to 2 weeks, thereby permitting their use as bypass grafts within the clinical time window for elective cardiovascular surgery. Furthermore, our method uses only clinically approved materials and can be adapted to various cell sources, simplifying the path toward future clinical translation.


Assuntos
Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Artéria Femoral/cirurgia , Músculo Liso Vascular/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Aorta/citologia , Velocidade do Fluxo Sanguíneo , Implante de Prótese Vascular/efeitos adversos , Células Cultivadas , Técnicas de Cocultura , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Fibroblastos , Humanos , Masculino , Miócitos de Músculo Liso , Desenho de Prótese , Falha de Prótese , Ratos Nus , Fluxo Sanguíneo Regional , Estresse Mecânico , Resistência à Tração , Fatores de Tempo , Grau de Desobstrução Vascular
4.
J Thorac Cardiovasc Surg ; 155(3): 1118-1127.e1, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29452461

RESUMO

OBJECTIVE: Although the mammalian heart's ability to fully regenerate is debated, its potential to extensively repair itself is gaining support. We hypothesized that heart regeneration relies on rapid angiogenesis to support myocardial regrowth and sought to characterize the timeline for angiogenesis and cell proliferation in regeneration. METHODS: One-day-old CD-1 mice (P1, N = 60) underwent apical resection or sham surgery. Hearts were explanted at serial time points from 0 to 30 days postresection and analyzed with immunohistochemistry to visualize vessel ingrowth and cardiomyocyte migration into the resected region. Proliferating cells were labeled with 5-ethynyl-2'-deoxyuridine injections 12 hours before explant. 5-Ethynyl-2'-deoxyuridine-positive cells were counted in both the apex and remote areas of the heart. Masson's trichrome was used to assess fibrosis. RESULTS: By 30 days postresection, hearts regenerated with minimal fibrosis. Compared with sham surgery, apical resection stimulated a significant increase in proliferation of preexisting cardiomyocytes between 3 and 11 days after injury. Capillary migration into the apical thrombus was detected as early as 2 days postresection, with development of mature arteries by 5 days postresection. New vessels became perfused by 5 days postresection as evidenced by lectin injection. Vessel density and diameter significantly increased within the resected area over 21 days, and vessel ingrowth always preceded cardiomyocyte migration, with coalignment of most migrating cardiomyocytes with ingrowing vessels. CONCLUSIONS: Endothelial cells migrate into the apical thrombus early after resection, develop into functional arteries, and precede cardiomyocyte ingrowth during mammalian heart regeneration. This endogenous neonatal response emphasizes the importance of expeditious angiogenesis required for neomyogenesis.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Movimento Celular , Proliferação de Células , Vasos Coronários/fisiopatologia , Células Endoteliais/patologia , Coração/fisiopatologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Regeneração , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Cocultura , Circulação Coronária , Fibrose , Camundongos , Fatores de Tempo
5.
Cardiovasc Diabetol ; 16(1): 142, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096622

RESUMO

BACKGROUND: Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. METHODS: Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). RESULTS: SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. CONCLUSIONS: Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Cardiomiopatias Diabéticas/prevenção & controle , Células Progenitoras Endoteliais/transplante , Microvasos , Miócitos de Músculo Liso/transplante , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/fisiopatologia , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Microvasos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Roedores
6.
Sci Adv ; 3(6): e1603078, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630913

RESUMO

Coronary artery disease is one of the most common causes of death and disability, afflicting more than 15 million Americans. Although pharmacological advances and revascularization techniques have decreased mortality, many survivors will eventually succumb to heart failure secondary to the residual microvascular perfusion deficit that remains after revascularization. We present a novel system that rescues the myocardium from acute ischemia, using photosynthesis through intramyocardial delivery of the cyanobacterium Synechococcus elongatus. By using light rather than blood flow as a source of energy, photosynthetic therapy increases tissue oxygenation, maintains myocardial metabolism, and yields durable improvements in cardiac function during and after induction of ischemia. By circumventing blood flow entirely to provide tissue with oxygen and nutrients, this system has the potential to create a paradigm shift in the way ischemic heart disease is treated.


Assuntos
Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Processos Fototróficos , Animais , Terapia Biológica , Cianobactérias , Metabolismo Energético , Testes de Função Cardíaca , Hipóxia/metabolismo , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Fotossíntese , Ratos
7.
Biotechnol Bioeng ; 114(10): 2379-2389, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28574594

RESUMO

In the last decade, numerous growth factors and biomaterials have been explored for the treatment of myocardial infarction (MI). While pre-clinical studies have demonstrated promising results, clinical trials have been disappointing and inconsistent, likely due to poor translatability. In the present study, we investigate a potential myocardial regenerative therapy consisting of a protein-engineered dimeric fragment of hepatocyte growth factor (HGFdf) encapsulated in a shear-thinning, self-healing, bioengineered hydrogel (SHIELD). We hypothesized that SHIELD would facilitate targeted, sustained intramyocardial delivery of HGFdf thereby attenuating myocardial injury and post-infarction remodeling. Adult male Wistar rats (n = 45) underwent sham surgery or induction of MI followed by injection of phosphate buffered saline (PBS), 10 µg HGFdf alone, SHIELD alone, or SHIELD encapsulating 10 µg HGFdf. Ventricular function, infarct size, and angiogenic response were assessed 4 weeks post-infarction. Treatment with SHIELD + HGFdf significantly reduced infarct size and increased both ejection fraction and borderzone arteriole density compared to the controls. Thus, sustained delivery of HGFdf via SHIELD limits post-infarction adverse ventricular remodeling by increasing angiogenesis and reducing fibrosis. Encapsulation of HGFdf in SHIELD improves clinical translatability by enabling minimally-invasive delivery and subsequent retention and sustained administration of this novel, potent angiogenic protein analog. Biotechnol. Bioeng. 2017;114: 2379-2389. © 2017 Wiley Periodicals, Inc.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Fator de Crescimento de Hepatócito/administração & dosagem , Hidrogéis/química , Infarto do Miocárdio/tratamento farmacológico , Engenharia de Proteínas/métodos , Proteínas Recombinantes/administração & dosagem , Disfunção Ventricular Esquerda/prevenção & controle , Proteínas Angiogênicas/administração & dosagem , Proteínas Angiogênicas/química , Proteínas Angiogênicas/genética , Animais , Preparações de Ação Retardada/química , Difusão , Fator de Crescimento de Hepatócito/análogos & derivados , Fator de Crescimento de Hepatócito/genética , Injeções , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Resistência ao Cisalhamento , Resultado do Tratamento , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/patologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...